图书介绍
微积分学 英文PDF|Epub|txt|kindle电子书版本网盘下载
![微积分学 英文](https://www.shukui.net/cover/73/34209495.jpg)
- 张凤玲,姚妙新,张玉环编著 著
- 出版社: 天津:天津大学出版社
- ISBN:7561814607
- 出版时间:2001
- 标注页数:253页
- 文件大小:9MB
- 文件页数:262页
- 主题词:
PDF下载
下载说明
微积分学 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Functions1
1.1 Sets1
1.1.1 Definition of Set1
1.1.2 Operations upon Sets1
1.1.3 The Set of Real Numbers2
1.2 Functions3
1.2.1 Definition3
1.2.2 Some Properties of Functions4
1.3 Composite Functions and Inverse Functions6
1.3.1 Composite Functions6
1.3.2 Inverse Functions8
1.4 Elementary Functions9
1.4.1 Constant functions9
1.4.2 Power functions9
1.4.3 Exponential functions10
1.4.4 Logarithmic functions10
1.4.5 Trigonometric functions10
1.4.6 Anti-trigonometric functions12
1.5 Exercises12
2 Limits and Continuity15
2.1 Limits of Sequences15
2.1.1 Definition15
2.2 Limits of Functions18
2.2.1 A Limit of a Function f(x)as x Tends to a Real Number x018
2.2.2 Limits Involving Infinity23
2.3 Techniques for Finding Limits27
2.4 Continuous Functions33
2.5 Exercises39
3 The Derivative43
3.1 Tangent lines and Rates of Change43
3.2 Definition of Derivative46
3.3 Differentiation Formulas49
3.4 Derivatives of Logarithmic Functions52
3.5 Derivatives of Trigonometric Functions53
3.6 The Chain Rule56
3.7 Derivatives of Inverse Functions and Implicit Differentiation59
3.8 Higher Derivatives64
3.9 Differentials and Linear Approximations65
3.9.1 Diffcrentials65
3.9.2 Linear Approximations67
3.10 Exercises68
4 Applications of Derivative71
4.1 The Mean Value Theorem71
4.2 Indeterminate Forms and L HOSPITAL S Rule74
4.2.1 The Forms 0/0 and ∞/∞74
4.2.2 The Forms 0·∞,00, ∞0,1∞ and ∞-∞76
4.3 Monotonic Functions78
4.4 Concavity and Points of Inflection80
4.5 Extrema of Functions83
4.6 Applications to Economics89
4.7 Exercises92
5 Indefinite Integrals95
5.1 Antiderivatives and the Indefinite Integral95
5.2 Substitution Rules100
5.3 Integration by Parts106
5.4 Exercises110
6 Definite Integrals113
6.1 Area and the Definite Integral113
6.2 Properties of the Definite Integral117
6.3 The Fundamental Theorem of Calculus121
6.4 Techniques of Integration125
6.4.1 Formula for integration by substitution125
6.4.2 Formula for integration by parts126
6.5 Improper Integrals127
6.5.1 Type 1:Infinite Intervals127
6.5.2 Type 2:Discontinuous Integrand131
6.6 Exercises133
7 Applications of Definite Integrals137
7.1 Area between Curves137
7.2 Volume140
7.3 Are Length144
7.4 Area of a Surface of Revolution148
7.5 Work150
7.6 Applications in Business and Economics151
7.6.1 Continuous Income Stream152
7.6.2 Consumers and Producers Surplus152
7.7 Exercises156
8 Series159
8.1 Numerical Series159
8.1.1 Fundamental Concepts159
8.1.2 Elementary Properties160
8.1.3 Infinite Series of Nonnegative Terms162
8.1.4 Alternating Series164
8.1.5 Absolute and Conditional Convergence165
8.2 Functional Series167
8.2.1 Power Series168
8.2.2 Properties of Power Series170
8.3 Taylor Series171
8.4 Exercises174
9 Vector Algebra and Space Ana?ytic Geometry177
9.1 Rectangular Coordinates in Space177
9.2 Vector Algebra179
9.2.1 Operations of Vectors179
9.2.2 The Coordinates of a Vector181
9.2.3 The Scalar Product185
9.2.4 The Vector Product187
9.3 The Planes and Lines in Space189
9.3.1 The Point-Normal Form Equations of a Plane189
9.3.2 Distance from a Point to a Plane190
9.3.3 The Angle between Two Planes191
9.3.4 The General Equation of a Line in Space192
9.3.5 Equations of a Line192
9.3.6 The Angle between Two Lines193
9.4 Equations for a Surface or a Curve194
9.4.1 The Equation for a Sphere194
9.4.2 The Equation of a Cylindrical Surface with Generators Paralleling to a Coordinate Axis194
9.4.3 Equation for the Intersection of Two Curved Surfaces195
9.4.4 The Parametric Equation of a Space Curve196
9.4.5 Equation for the Projecting Curve on a Coordinate Plane of a Space Curve196
9.5 Surfaces of Revolution197
9.6 Quadratic Surfaces198
9.6.1 Ellipsoids198
9.6.2 Hyperboloids of One Sheet199
9.6.3 Hyperboloids of Two Sheets199
9.6.4 Quadratic Cones200
9.6.5 Paraboloids201
9.6.6 Quadratic Cylinders201
9.7 Exercises202
10 Functions of Several Variables203
10.1 Fundamental Concepts203
10.2 Limits and Continuity205
10.3 Partial Derivatives207
10.4 The Chain Rule211
10.5 Approximation and Total Differential215
10.6 Applications of Partial Derivatives217
10.6.1 Geometric App?ication217
10.6.2 Extreme Values of Functions of Two Variables221
10.7 Exercises228
11 Multiple Integrals231
11.1 Double Integrals231
11.2 Properties of Double Integral232
11.3 Evaluation of Double Integrals235
11.4 Triple Integrals240
11.4.1 The Mass of an Object of Nonhomogeneous Density240
11.4.2 The Definition of Triple Integral240
11.4.3 Evaluation of Triple Integrals in Rectangular Coordinates241
11.5 Exercises244